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1.0  Introduction

Consistent long-term Earth data sets are needed to assess the potential effects of man’s activities on

climate and other Earth systems. The opportunity and challenge facing today’s remote sensing scientist

is to provide remote sensing data of such long-term accuracy, consistency and reliability that today’s

data products can serve as an ecological benchmark for future generations. Accuracy of individual data

products and consistency among the products of different instruments and programs is achieved by the

consistent use of common calibration sources and methods. The basic thought behind the use of the

Moon as a radiometric reference is the idea that the reflectance of the Moon is a very stable (estimated

change 10-9 per year [Kieffer and Wildey 1985]) and the idea that the Moon can serve as a common

radiometric reference viewed on-orbit by MODIS and other remote sensing instruments. Conceptually,

the Lunar reference could demonstrate that proper and consistent calibration was used among many of

the sensors that will be built in the next few decades, and, since the Moon is such an enduring standard,

similar verification will be possible even for sensors built in coming centuries by future generations.

One of the Lunar reference strategies proposed for MODIS would use the Moon not as an absolute

radiometric standard but as a very precise relative standard useful for detecting changes in sensor

responsivity occurring between early on-orbit Lunar views and appropriate later views. This approach

is based on the idea that the Lunar radiance at a later viewing will match that of an earlier viewing

when the Solar illumination and viewing geometry of the original view recur.

This report primarily discusses Lunar radiometric characteristics as they relate to use of the Moon as

a MODIS radiometric reference. Appendix A in this report contains a preliminary discussion of the

procedures required to compute the Lunar phase angle and the angular orientation of the Lunar phase

pattern. A follow-on report will address Lunar motion and other aspects of Lunar view geometry.

Planned future reports will address the relative merits of alternative Lunar strategies and implementa-

tion specifics for the techniques chosen for MODIS use.

This paper presents average or "representative" Lunar radiance values expected for the MODIS
reflective bands when the Moon is viewed by MODIS through the Space View Port and EOS
platform maneuvers are not used to enhance Lunar viewing opportunities. The Lunar phase an-
gle for serendipitous views obtained under these conditions is roughly 67.5 degrees. Average
Lunar radiance values for the VIS and NIR bands are projected from Lunar irradiance measure-
ments done by Lane and Irvine. Average Lunar radiances in the SWIR bands are obtained from
Lunar albedo projections prepared by Hugh H. Kieffer of the U.S. Geological Survey. Lunar
radiance values are combined with MODIS required performance parameters to obtain esti-
mates of signal-to-noise ratios, to compare Lunar radiance levels with typical radiance values
for Earth scenes, and to compare Lunar radiances with maximum obtainable MODIS readings
(full scale) in each of the MODIS reflective bands.
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2.0  Average Lunar Spectral Radiance in the MODIS VIS and NIR Bands

Surprisingly few measurements of Lunar radiance or irradiance have been done for the complete

Lunar disk. In 1916, H.N. Russell measured an accurate Lunar phase curve (Russell 1916a, 1916b) in

the visible spectral region (λ=550nm) and in the mid-1930’s Rougier measured Lunar irradiance and a

phase curve (Rougier 1934, 1937) for mean wavelength λ=445nm. [The Lunar phase angle is the

angle between the observer’s view vector and the Solar incident vector as determined at the center of

the Moon. The Lunar phase curve expresses the Lunar irradiance at phase angle α as a fraction of the

corresponding Lunar irradiance at full Moon (minimum phase angle for that Lunar phase cycle).] Both

of these measurements were done for relatively wide spectral passbands roughly overlapping the

human visual response.

Following these early measurements, the next published results for the irradiance of the complete

Lunar disk were provided by Lane and Irvine (Lane and Irvine 1973). Their measurements were done

using a series of relatively narrow bandpass spectral filters to determine the spectral irradiance of the

Moon. Spectral irradiance measurements were done at nine wavelengths ranging from 359 to

1063.5nm and at phase angles ranging from 6 to 120 degrees. Lunar irradiance measurements also

were done using three filters with broader bandwidths representing the U (ultraviolet), B (blue), and V

(visible) spectral weighting functions used by astronomers for stellar magnitude measurements. Atmo-

spheric extinction for the Moon was computed from corresponding extinction parameters measured for

standard reference stars, and ground-measured Lunar irradiances were projected to corresponding top-

of-the-atmosphere values. Measured values also were adjusted to unit distance from the Sun and to

mean Earth-Moon distance. The Lane and Irvine Lunar irradiance values compare well with the earlier

values obtained by Russell and Rougier, and in fact, the spectral behavior measured by Lane and Irvine

helps to explain some of the discrepancy observed between the two earlier measurements.

The system of stellar magnitudes in current use is adapted from an earlier system used by the ancient

Greeks. By the ancient system, stellar magnitudes of the visible stars ranged from 1 to 6, with

magnitude 1 stars being the brightest and magnitude 6 stars being the faintest. In the current system,

the relative magnitude of two celestial bodies is determined by the relationship

(1)

where m1 is the magnitude of the celestial body of irradiance E1 and m2 is the corresponding magni-

tude of the celestial body of irradiance E2. The minus sign (magnitude more negative for the brighter

celestial body) and the exponent division factor of 2.5 were chosen to maintain consistency with the

earlier Greek system.

Absolute stellar magnitudes are obtained from the relative scale defined in Eq. (1) by consistently

assigning absolute stellar magnitudes to a series of “standard” reference stars that have been carefully

measured and are known to have low intrinsic photometric variability (less than 1 percent). “Standard”

stars of known absolute magnitude have been established for all regions of the celestial sphere so that

E1

E2
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m1 m2−
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they can be readily referenced independently of the position of the celestial body being measured.

Usually a number of standard stars will be referenced during a single magnitude measurement. Correc-

tions for differences in atmospheric extinction may be necessary.

Absolute magnitudes determined using the U, B, and V spectral weighting functions mentioned

above are often designated with the letters U, B, and V respectively. A stellar color index can be

devised based on magnitude differences observed using different spectral weighting functions. B–V

and U–B are the pairs most often used as color indices. A color index of zero has been assigned to a

homogeneous group of stars identified as “spectral type AO, luminosity class V”.

The Lunar magnitude results obtained by Lane and Irvine reference the Sun with an absolute Visible

magnitude (V) of –26.81 and a color index B–V= 0.65. The magnitude scale of each of the narrow

spectral bands measured by Lane and Irvine was adjusted so that the corresponding color index for that

spectral band (say band X) relative to V for the Sun was zero, i.e. X–V=0 where X is the absolute

Table 1. Measured Lunar Magnitudes at Full Moon as a Function of Wavelength
 (Lane and Irvine, 1973)

λ(nm) 359.0 392.6 415.5 457.3 501.2 626.4 729.7 859.5 1063.5

m –12.23 –12.41 –12.45 –12.56 –12.65 –13.11 –13.22 –13.22 –13.35

Table 2. Phase Curves for the Lunar Disk Expressed in Magnitudes
 (Lane and Irvine, 1973)

λ(nm) 359.0 392.6 415.5 457.3 501.2 626.4 729.7 859.5 1063.5

0° 0 0 0 0 0 0 0 0 0

10° 0.29 0.27 0.29 0.28 0.27 0.27 0.26 0.25 0.24

20° 0.58 0.55 0.57 0.56 0.55 0.53 0.52 0.50 0.48

30° 0.86 0.82 0.86 0.83 0.82 0.80 0.77 0.74 0.72

40° 1.15 1.09 1.15 1.11 1.10 1.06 1.03 0.99 0.96

50° 1.41 1.34 1.41 1.37 1.36 1.32 1.28 1.23 1.20

60° 1.66 1.60 1.67 1.62 1.62 1.58 1.54 1.49 1.44

70° 1.93 1.88 1.95 1.90 1.89 1.86 1.82 1.77 1.70

80° 2.23 2.19 2.26 2.20 2.20 2.17 2.13 2.08 1.99

90° 2.59 2.56 2.61 2.55 2.54 2.52 2.48 2.43 2.33

100° 3.01 2.99 3.02 2.95 2.94 2.93 2.87 2.82 2.72

110° 3.51 3.50 3.50 3.42 3.40 3.41 3.32 3.27 3.18

120° 4.11 4.10 4.06 3.98 3.94 3.97 3.83 3.78 3.72
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magnitude determined for the Sun in Lane and Irvine’s spectral band X. Stated differently, Lane and

Irvine adjusted the magnitude scale in each of their measured spectral bands so that the magnitude of

the Sun in that band (if it could be observed directly with no harm to the instrument) would be –26.81. 

Using these adjusted scales, the magnitudes for the full Moon as extrapolated by Lane and Irvine

from their measurements are given in Table 1. Lane and Irvine made measurements for phase angles as

small as 6.6° but they avoided measurements at smaller angles to avoid a complicating phenomenon

known as “opposition surge” or “opposition effect”. Opposition surge is an increase in the brightness

of a particulate or other rough surface that occurs as the observer’s view direction closely approaches

the direction of incident illumination. For celestial bodies, the opposition effect occurs near zero phase

angle. The phenomenon was first observed in the rings of Saturn over a century ago (Seeliger 1876,

1895) and the effect has since been observed in the Moon and nearly all the other bodies of the Solar

System that present a visible solid surface (Hapke 1986). The opposition effect also has been observed

in a wide variety of terrestrial materials.

Seeliger first gave the correct explanation: at zero phase, the shadows produced by the elevated or

protruding elements of the surface and the shadows occurring in the crevices or recesses of the surface

are not visible to a viewer looking along the direction of the incident illumination, i.e. all elements of

the reflecting surface that are visible to the viewer are illuminated by the source and contribute to the

return observed by the viewer. A number of mathematical models have been developed to relate oppo-
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Figure 1. Surface representing the Lunar magnitudes measured by Lane and Irvine. Measurements
were done at nine wavelengths ranging from 359 to 1063.5nm and at phase angles ranging from 6 to
120 degrees. Results are expressed relative to the Sun at absolute magnitude –26.81. A slight reddish
tinge is evident in the Lunar reflection.
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sition brightness to the statistical characteristics of a rough surface (Hapke 1981, 1984, 1986), but the

phenomenon is most important near zero phase angle where a slight change in angle can produce

appreciable change in brightness. The variation in Lunar brightness near zero phase angle is some-

times called the Hapke function.

 The decrease in Lunar irradiance resulting from increased phase angle (the phase law) obtained in

the Lane and Irvine measurements is given in Table 2. A surface showing the expected Lunar magni-

tudes (the full Moon levels given in Table 1 increased by the phase law variations given in Table 2) is

shown in Figure 1. Results are presented as a function of Lunar phase angle and wavelength. By Eq.(1)

these Lunar magnitudes implicitly relate Lunar irradiance to corresponding Solar irradiance in a

narrow passband of interest, and we shall determine average Lunar spectral irradiance in the MODIS

bands listed in Table3 by computing the corresponding average Solar spectral irradiance in these same

bands. 

The average spectral irradiance from the Sun  in MODIS spectral band i  is the weighted aver-

age of the Solar spectral irradiance ESun(λ), where the average is taken using the MODIS transmit-

tance-based system-level response τi(λ) as the spectral weighting function, i.e.

(2)

ÊSun i,

ÊSun i,

ESun λ( ) τi λ( ) dλ

τi 0≠
∫

τi λ( ) dλ

τi 0≠
∫

=

Table 3. Center Wavelengths and Bandwidths
 of the MODIS VIS, NIR, and SWIR Bands

Band No.
Center 

Wavelength
 (nm)

Bandwidth 
(nm)

Band No.
Center 

Wavelength
 (nm)

Bandwidth 
(nm)

1 645 50 11 531 10

2 858 35 12 551 10

3 469 20 13 667 10

4 555 20 14 678 10

5 1240 20 15 748 10

6 1640 24.6 16 869 15

7 2130 50 17 905 30

8 412 15 18 936 10

9 443 10 19 940 50

10 448 10 26 1375 30
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The symbol  indicates that the integration is to be taken over all measured values of λ for which

τi(λ) is not zero. In the computations that follow, ESun(λ) was obtained from Solar spectra provided by

the Smithsonian Astrophysical Observatory (Kurucz, private communication, 1995). Solar spectral

irradiance for MODIS Band 12 is plotted in Figure 2; the weighted average Solar spectral irradiance

for MODIS Band12 is 1879.5W/m2/µm. Taui  was estimated from MODIS Engineering Model and

ProtoFlight Model measurements.

The average spectral radiance of the Moon can be obtained from the corresponding Lunar irradiance

by dividing by the solid angle of the illuminated portion of the Moon. The apparent illuminated area of

the Moon (or other spherical body) is computed as a function of phase angle in Appendix B of this

report. Converting Lunar area to apparent solid angle, the solid angle  described by the illumi-

nated portion of the Moon at phase angle α is related to the solid angle defined by the complete disk,

Ω0, by the relationship

(3)

where R0 is the Lunar radius and Rom is the observer-Moon separation..

3.0  Estimated Lunar Spectral Radiance in the MODIS SWIR Bands

Hugh Kieffer (Kieffer and Wildey 1996) has used the Lane and Irvine observations and laboratory

spectral measurements of Apollo 16 Lunar soil samples to prepare an extrapolation of Lunar bright-

ness for the spectral range out to 2.2µm. This spectral region includes previously unexamined MODIS

Bands 5, 6, 7, and 26 (1.240, 1.640, 2.130, and 1.375µm, respectively). The Kieffer estimates are

expressed in terms of “Full-Disk Average Albedo”, a term used by the author to denote an extension of

τi 0≠

Ω α( )
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Figure 2. Solar spectral irradiance in the vicinity of Band12 as provided by the Smithsonian
Astrophysical Observatory (Kurucz, private communication, 1995). The weighted average Solar
spectral irradiance for Band 12 is 1879.5W/m2/µm.



- 7 -

the conventional or geometric albedo for . (Albedo is normally defined for .) The equation

relating Full-Disk Average Albedo (p) and Lunar irradiance (Em) is (See Appendix C of this report)

(4)

where Es is the Solar irradiance. Figure 3 shows “full disk average albedo” values obtained from the

Lane and Irvine observations and as extrapolated to the new spectral domain. Results are given for

 degrees. Lunar irradiances corresponding to these albedos are obtained from Eq. (4).

4.0 Radiometric Results for the MODIS VIS, NIR, and SWIR Bands

Applying Eqs. (1) and (4) to the  values obtained from Eq. (2) and dividing the resulting

Lunar irradiances by the Lunar solid angle described in Eq. (3), we obtain the average Lunar spectral

radiances shown in Figure 4 for Lunar phase angle α=67.5 degrees. These values are averages not

only in the sense that they are radiances averaged over the illuminated portion of the Lunar disk, but

also in the sense that these results assume unit Solar distance and mean separation between the Earth

and Moon. Radiances of individual pixels sensed by MODIS will fall both above and below the aver-

age values indicated, and high-spatial-resolution spectral radiance measurements would be needed to

determine the maximum Lunar radiance that could occur. A phase angle of 67.5 degrees was chosen in

α 0≠ α 0=

p
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Figure 3. “Full-disk average albedo” values as obtained from Lane and Irvine observations and as
extrapolated by Kieffer (Kieffer and Wildey 1996). The extrapolated values are the four points shown
with coordinates on the right hand side. These are the projected values for . Lunar
irradiances corresponding to these albedos are obtained from Eq. (4).

α 67.5=
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these computations since an analysis of instrument and Lunar geometry has shown that serendipitous

views of the Moon through the MODIS Space View Port will occur when the Lunar phase angle is

roughly 67.5 degrees. Lunar viewing geometry will be discussed more thoroughly in a future report.

Figure 5 shows the expected average signal-to-noise ratios for MODIS in the Bands indicated. In

these computations it was assumed that the sensor noise levels just meet the requirements of the

MODIS specification. Figures 6 and 7 show the corresponding expected ratios of average Lunar radi-

ance to the sensor Ltyp and the percentage of full scale MODIS reading that the average Lunar radiance

represents.
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Appendix A

Computation of Lunar Geometric Parameters

Consider a three dimensional coordinate system xyz in which the position of the Sun is given

by rs, the position of the Moon is given by rm and the position of a Lunar observer is given by ro:

Then the Sun to Moon distance is given by

Rsm = jRsmj =
p
(rm � rs) � (rm � rs)

and Solar radiation strikes the Moon from the direction given by unit vector

n̂sm =
rm � rs

Rsm

:

Likewise the observer to Moon distance is

Rom = jRomj =
p
(rm � ro) � (rm � ro)

and the observer view direction is

n̂om =
rm � ro

Rom

:

The Lunar phase angle � is de�ned as the angle between the center of the Sun and and the

observer as determined at the center of the Moon. The magnitude of � can be computed from the

relation

cos� = n̂sm � n̂om:

Usually, phase angles for the waxing Moon (increasing in brightness) are considered negative and

phase angles for the waning Moon (decreasing in brightness) are considered positive. If Lunar

cycles are measured between successive new moons (synodical month), then by this convention

negative phase angles precede positive ones.

If the orientation of the Lunar phase pattern (�) is designated by the direction to the Sun

relative to the Lunar center in the sensor image, orientation can be de�ned by the projections

of the Moon to Sun unit vector (�n̂sm) on two mutually orthogonal axes, say unit vectors in

the direction of increasing scan (êscan) and increasing track (êtrack) where êscan and êtrack are

referenced to the sensor image. If computations are done in instrument based coordinates, êscan
and êtrack must be transformed to instrument coordinates before the components are computed.

Designating the transformed components of êscan and êtrack by ~escan and ~etrack, respectively, the

scan and track components of �n̂sm can be written

nscan = �n̂sm � ~escan

ntrack = �n̂sm � ~etrack

and we can then write

� = arctan2
�
nscan; ntrack

�

where arctan2(x; y) designates the arctangent function of type 2. Arctan2(x; y) assigns the proper

quadrant to arctangent results based on the signs of the x and y arguments.



Appendix B

Illuminated Area of a Spherical Celestial Body

Consider a spherical celestial body of radius R0 illuminated by the Sun from a direction given

by unit vector n̂sm. Let Nsm be the plane perpendicular to n̂sm that passes through the the

center of the sphere. Note that Nsm divides the sphere into illuminated and dark hemispheres.

Similarly, let n̂om be the unit vector donoting an observor's view direction and let Nom be the

plane perpendicular to n̂om also passing through the center of the sphere. Note that, from the

observer's perspective, Nom divides the sphere into visible and invisible hemispheres. The angle

between planes Nom and Nsm is the phase angle �. Attach xy-coordinates to the celestial body

with the y-axis along the line of intersection of the planes and the x-axis in the plane Nom.

O
bs

er
ve

r
V

ie
w

Solar

Illumination

x

Plane Nom

Plane Nsm

α
n̂sm

n̂om

Consider the boundaries of the illuminated area visible to the observer (intersection of the

illuminated and visible hemispheres, as discussed above). On the illuminated side (left in the

�gure), the x-coordinate of the boundary is

x = �

q
R2

0
� y2

and on the other side

x =

q
R2

0
� y2 cos�

since the angle between planes Nom and Nsm is �. Then integrating in the vertical dimension, the

illuminated area A is given by

A =

Z R0

�R0

q
R2

0
� y2 dy +

Z R0

�R0

q
R2

0
� y2 cos�dy

or collecting terms

A = (1 + cos�)

Z R0

�R0

q
R2

0
� y2 dy:

Substituting y = R0 sin#, dy = R0 cos #d#, and

A = (1 + cos�)R2

0

Z �=2

��=2

cos2#d#:



Again substituting

cos2# =
1 + cos 2#

2

and carrying out the indicated integration

A = (1 + cos�)R2

0

�

2

or

A =

�
1 + cos�

2

�
�R

2

0

i.e. the apparent illuminated area of a sphere of radius R0 is the area of the associated disk of the

same radius (�R2

0
) times a phase factor

�
1 + cos�

2

�

that describes the decrease in illuminated area as the phase angle increases or decreases from � = 0:



Appendix C

Albedo and Lunar Irradiance

The conventional or geometric albedo (p) of a celestial object is de�ned as the ratio of the

irradiance of the object at phase angle � = 0 to the corresponding irradiance of a perfectly di�using

disk (Lambertian and non-absorbing) at the same position and with the same apparent size as the

celestial object. If Em0 is the Lunar irradiance at � = 0 and Eref is the irradiance of the idealized

reference disk

p =
Em0

Eref

: (1)

We shall compute Eref : If the irradiance of the Sun at the Lunar center is Es; the radiance

at the surface of the reference disk is

Lref =
d2�ref

d! ds
=

1

�
Es (2)

since the reference surface is Lambertian. All quantities are relative to the surface of the reference

disk. Since Lref is constant across the entire reference surface, the intensity of the surface may be

obtained simply by multiplying Lref by the area of the reference surface:

Iref =
d�ref

d!
= �R2

0
Lref (3)

where R0 is the radius of the celestial object. Likewise, the di�erential 
ux falling on an observing

apparatus of capture area dA separated by a distance Rom from the reference surface is

d�ref = Irefd! = Iref
dA

R2
om

: (4)

Combining (2{4) and solving for Eref

Eref =
d�ref

dA
= Es

R2

0

R2
om

: (5)

and �nally, returning to (1) we obtain

p =
Em0

Es

R2

om

R2

0

: (6)

Note that, properly speaking, the geometric albedo p is de�ned only for � = 0:


